Unit 1 : lesson 2 : Periodic table for classification of elements

<u>Chemical elements differ in physical properties and chemical properties...</u> Therefore, there have been multiple attempts to classify the elements, and their goal is to facilitate study and find the relationship between the elements and their physical and chemical properties.

The most important attempts to classify elements:-

1) The periodic table of the scientist Mendeleev

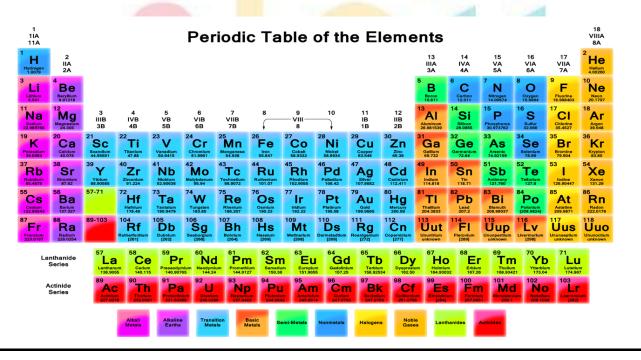
2) The periodic table of the scientist Moseley

<u>3) The modern periodic table</u>

1) The periodic table of the scientist Mendeleev...

- <u>The scientist Mendeleev's table is considered the first true periodic</u> <u>table for classifying elements...</u>
- <u>The elements are arranged in ascending order according to their</u> atomic mass, without a regular progression when moving from left to right in horizontal rows.
- <u>He discovered that the properties of the elements are repeated</u> periodically at the beginning of each new row.. This means that the elements that exist in the form of vertical columns are similar in properties

0	H	11	111	IV	V	VI	VII			
He	6.94	Be	B 10.8	• C 12.0	N 14.0	16.0	F 19.0	1		
Ne	Na	Mg	AI 270	SI	P	• 8	CI		VIII	
Ar 40.0	K 99.1 •Cu 63.5	Ca 40.1 Zn 45.4	Sc 45.0 Ga 99.7	Ti 47.9 Ge 728	V 50.9 As 74.0	Cr 520 Se 290	Min 54.9 Br 79.9	• Fe 55.9	C0 58.9	Ni 58.1
Kr 63.8	Rb 85.5 •Ag	Sr Cd	Y 00.9 In 115	Zr 912 • Sn	Nb 92.9 5b 122	Mo 95.9 Te	TC	Ru 101	Rh 103	Pd 100
Xe 131	Ce 133 •Au	Ba 187 •Hg 201	La 139 TI 204	H1 178 •Pb 207	Ta 181 Bi 209	W 164 Po (210)	Re 180 Al (210)	Os 194	lir 192	Pt 195


2) The periodic table of the scientist Moseley...

- After the discovery of protons by the scientist Rutherford, the scientist Moseley discovered that the periodicity of the properties of elements is related to their atomic numbers and not to the atomic mass.
- <u>Moseley modified Mendeleev's table in which the elements were</u> <u>arranged in ascending order according to their atomic number.</u>
- Each element exceeds the element that precedes it in the same period by one integer
- Moseley added to the scientist Mendeleev's table the group of inert gases and other new elements that were discovered after the publication of Mendeleev's table.

1	2											3	4	5	6	7	0
							н										He
Li	Be											в	С	N	0	F	Ne
Na	Mg				_							AI	Si	Р	s	CI	Ar
к	Ca	Sc	Tì	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	NЬ	Мо	Τс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	те	I	Xe
Cs	Ba	La	Hf	та	w	Re	Os	I٢	Pt	Au	Hg	тι	РЬ	Bi	Ро	At	Rn
Fr	Ra	Ac															

3) The modern periodic table:-

- <u>The elements are arranged in ascending order according to their</u> <u>atomic numbers and the method of filling the sub-energy levels with</u> <u>electrons.</u>

Description of the modern periodic table:-

<u>- The modern periodic table consists of 7 horizontal period and 18 vertical groups</u>

(7 cycles because the number of energy levels is 7 levels... In each cycle we begin to fill a new energy level with electrons)

- The number of elements in the modern periodic table is 118

Elements are found in 4 basic Blocks: S, P, D, and F

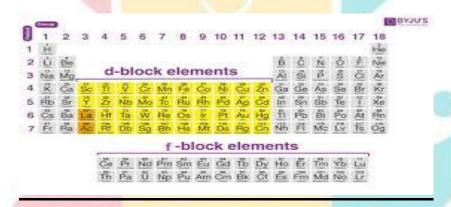
Block s elements:-

BRYJU'S S-block elements He L Be BCNOF Ne AI SI P S CI Ar Na Mg Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr K Ča Y Zi No Mo to Fu Fin Fin Ag Cơ lịn Sin Số Tê 1 Xê Là H1 Tà W Rê Os Ir Pl Au Hỹ Tỉ Pồ Bị Po At Fin St Cs Ba Ra Ac Rt Db Sg Bh Hs Mt Ds Rg Ch Nh FI Mc Ly Is Og Ce Pr Nd Pm Sm Eu Gd To Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

- Location: left of the modern periodic table
- <u>It consists of two vertical groups: 1A and 2A</u>

(1A alkali metals, 2A are called alkaline earth metals)

- <u>All of its elements are solid metals except hydrogen, which is not a gas</u> <u>metal.</u>


Block p elements:-

P-BLOCK ELEMENTS														0) <u>B</u> Y	NU.	S	
H																	He	
ů	Be										1	8	ċ	Ń	9	Ē	Ne	
Na	Mg											Å	ŝ	P	ŝ	či	Är	
Ř	ča	Sc	名	Ň	Ğr	Mn	Fo	ćo	Ni	Gu	ž	Ğa	Ge	Ås	Še.	å	Řr	
Řb	Šr	Ÿ	Ž	Ňb	Mo	ť	Ru	Řh	Pd	Åg	ĉ	in	ŝ'n	Šb	Ťe	ĩ	Xe	
čs	Ba.	G	译	Ťa	ŵ	Re	ős	Îr	Pt.	Âu	晶	ħ	Po	ů.	Po	Åt	Ř'n	
Fr	Ra	Ä	Řf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cr	Nh	胃	Mo	Ű¥ LV	ťs	0g	
			de de	Pr	Nd	Pm	Sm	Eu	Ğd	Ťb	Dy	Ho	Ër	Tm	YD	ťu	1	
			Th	pa 1	ů	Np	Pu	Am	cm	Űk.	Čſ	Es.	Fm	Md	No	Lr		

- Location: Right of the modern periodic table
- <u>It consists of 6 groups starting with group 3A and ending with group</u> <u>zero</u>
- Most of its elements are non-metals, in addition to metalloids and some other metals
- <u>Its elements exist in solid and gaseous forms, with the exception of</u> <u>bromine (Br), which is a liquid nonmetal</u>
- <u>One of its most important groups is the penultimate group 7A, which is</u> called the halogens, and the last group (zero) is called the noble gases.

<u>Block d Elemens</u>

- Location: in the middle of the modern periodic table
- It consists of 10 groups starting with Group 3B and ending with Group <u>2B</u>
- <u>It begins to appear in the fourth period and its elements are called</u> <u>transitional elements</u>
- <u>All of its elements are metallic elements in the solid state, except for</u> <u>mercury (Hg), which is a liquid fluid element</u>

Block f Elemens

- Location at the bottom of the modern periodic table
- It consists of two series: the lanthanide series and the actinide series.
- All of its elements are metallic elements.

Exercises : Complete the following phrases:-

1) The period number is equal to the number of -----

2) Block s is located ----- the modern periodic table

3) Block p contains ----- group

4) Noble gases fall into the category -----

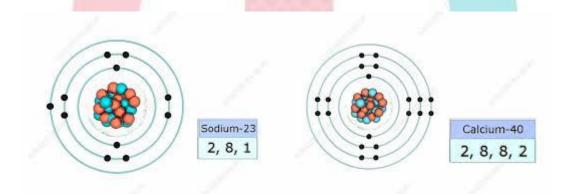
5) Block d is located in ----- the modern periodic table

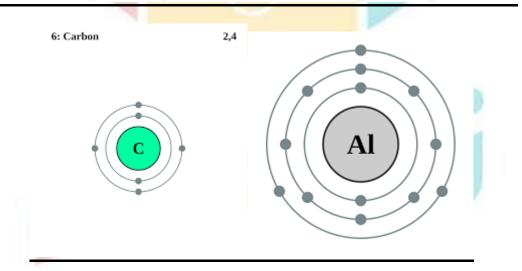
6) The first scientist to create a true periodic table -----

7) Moseley arranged the elements in ascending order according to -----

8) Number of elements in the modern periodic table -----

9) The scientist discovered ----- that the nucleus contains positively charged protons


10) The scientist added ---- the group of inert gases to the periodic table


WEEK 2 : SESSION 1 : UNIT 1 : LESSON 2

<u>The location of the elements in the groups symbolized by the symbol A can</u> be determined by the atomic number...

(1) The electron configuration of the atom is determined (The number of energy levels is the period number)

(2) The number of electrons in the last energy level determines the group number (we put the letter A next to the number of electrons in the last energy level)

$_{11}$ Na : 2, 8, 1	period 3 / group 1A
₂₀ Ca: 2, 8, 8, 2	period 4 / group 2A
$_{6}$ C : 2. 4	period 4 / group 4A
¹³ Al : 2, 8 ,3	period 3 / group 3A

<mark>symbol</mark>	Electronic distribution	period	group
<mark>₁9</mark> K			
08			
18 <mark>Ar</mark>			
17 <mark>Cl</mark>			
<mark>₃Li</mark>			
1 <mark>1</mark>			
₄ Be			
₉ F			

<u>How to determine the atomic number of an element given its location in the table:-</u>

<u>1- The period number of an element is equal to the number of energy levels</u> <u>occupied by the electrons</u>

2- The group number of the element is equal to the number of electrons in the last energy level

<u>3- The atomic number of an element is equal to the sum of the numbers of electrons in its energy levels</u>

Examples:-

<u>1- Calculate the atomic number of the element X which is located in the second period and group 1A</u>

<u>2- Calculate the atomic number of element Y located in the third period and</u> <u>group 7A</u>

3- Calculate the atomic number of the element Z, which is located in the second period and the zero group

<u>4- Calculate the atomic number of the element Q, which is located in the</u> <u>third period and group 3A</u>

5- Calculate the atomic number of the element M located in the first period and the zero group

Elem	<mark>ents of (</mark>	one per	iod			E	<mark>leme</mark>	<mark>nts</mark>	<mark>of o</mark>	<mark>ne g</mark>	<mark>grou</mark>	<mark>ID</mark>	
- They differ in the number of electrons in the last energy level					- They agree in the number of electrons in the last energy level								
- They agree in the number of levels of energy					- They differ in the number of energy levels								
- They differ in chemical properties						<u>- They are similar in chemical properties</u>							
Each elemen					- Each element has 8 electrons more								
than the pred	ceding e	element	in the		than the previous element, or a full								
<u>period</u>					energy level								
1 1IA 11A		Pe	riodic T	able	of the	Elem	ents					18 VIIIA 8A	
1 Hydrogen 1 0078 2 IIA 2A							13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	2 He Helium 4.00260	
3 Litum Ethium Real							5 B Boron 10.811	6 Carbon 12.011	7 N Nitrogen 14.00874	8 Oxygen 15 0904	9 F Fluorine 18.998403	10 Neon 20,1797	
11 Sodura 22,99976	3 4 IIIB IVB 3B 4B	5 6 VB VIB 5B 6B	7 8 VIIB 7B	9 	10	11 12 IB IIB 1B 2B	13 Aluminum 26,981539	14 Si Silicon 28.0855	15 Phosphorus 30.973762	16 S Sulfur 32.066	17 Cl Chlorine 35.4527	18 Argon 39,948	
19 R Potassium 30.0963 20 Ca Calcium 40.078	21 Sc Scandium 44.95591 22 Ti Titanium 47.88	23 V Vanadium 50.9415 24 Cr Chromium 51.9961	25 Mn Manganese 54,938 26 Fe	27 CO Cobalt 58.9332		Cu 200 Copper 63.546	31 Gallium 69.732	32 Germanium 72.64	33 As Arsenic 74.92159	34 Se Selenium 78.96	35 Br Bromine 79.904	36 Kr Krypton 83.80	
37 Rbbidium 85.4678 38 Strontium 87.62	39 Y Yttrium 88.90585 40 Zr Zirconium 91.224	41 Nb Nioblum 92.90638 42 Molybdenum 95.94	43 Tc Harding			Ag Silver 07.8682 48 Cd Cadmiur 112.411		50 Sn ^{Tin} 118.71	51 Sb Antimony 121.760	52 Te Teilurium 127.6	53 Iodine 126.90447	54 Xe Xenon 131.29	
55 Cesium 132,90543 56 Ba Barlum 137,327	57-71 72 Hf Hafnium 178.49	73 Ta Tantalum 180.9479 74 W Tungsten 183.85	75 76 76 Re Os Bhenium 186,207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Au Gold 96.9665	81 TI Theilium 204.3833	82 Pb Lead 207.2	83 Bi Bismuth 208.98037	84 Po Polonium [208.9824]	85 At Astatine 209.9871	86 Rn Radon 222.0176	
87 Francium Francium 223.0197	89-103 104 Rutherfordium [261]	110 11	¹ Rg ¹¹² Cn	113	¹¹⁴ FI	Uup	116 Lv	¹¹⁷ Uus	¹¹⁸ Uuo				

The elements are divided according to their properties and the distribution of electrons into four types of elements:-

Am

Eu Gd

Cm

Tb

Bk

Halogen

Dy

Cf

Noble Gases Ho

Es

Erbium

Ĕπ

Tm

¹⁰¹ Md Yb

No

Lu

Metals nonmetals metalloids inert gases.

Pm

Np

Basic Metals

Nd

Sm

Pu

Metals:-

Lanthanide Series

> Actinide Series

Ce

La

Pr

<u>They are characterized by the last energy level often contains less than four</u> <u>electrons</u>

Nonmetals:-

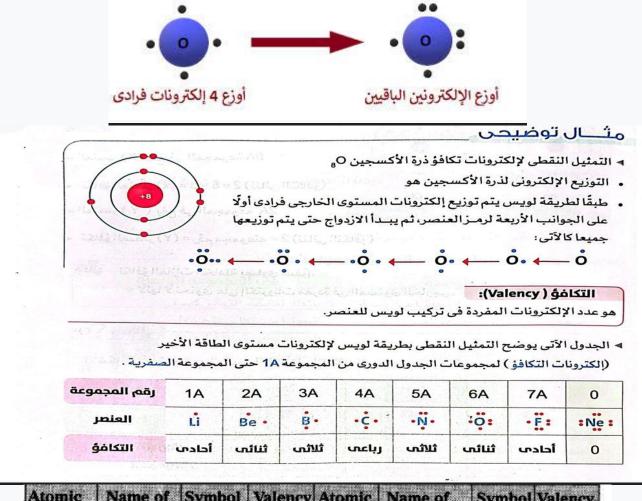
<u>They are characterized by the last energy level often contains more than</u> <u>four electrons</u>

Metalloids:-

<u>elements that combine the properties of metals and nonmetals. These</u> <u>elements fall into the S block.</u>

Inert gases:-

gaseous elements that do not react under normal conditions because the last energy level is filled with electrons


Types of gaseous elements:-

Inert gases	Gases (non-metallic)
<u>- It is in the zero group</u>	It is found in the P-block elements, except for hydrogen (H), which is in the S-block
<u>- 6 items</u>	<u>- 5 items</u>
- Do not participate in chemical reactions under normal conditions	<u>- Participates in chemical reactions</u> <u>under normal conditions</u>
<u>- It includes the elements</u>	-It includes the elements
Helium(He), Neon(Ne), Argon(Ar),	Hydrogen(H) – Nitrogen(N)-
Krypton(Kr), Xenon(Xe), and	Oxygen(O) – Fluorine(F) –
Radion(Rn)	Chlorine(Cl)

<u>The electrons of the last energy level play an important role in the formation</u> <u>of chemical bonds</u>

valence:-

It is the number of single electrons in the Lewis structure of an element

Atomic number	Name of element	Symbol	Valency	Atomic number	Name of element	Symbol	Valency	
1 Hydroger		Н	1	11	Sodium	Na	1	
2	Helium	He	0	12	Magnesium	Mg	2	
3	Lithium	Li	1	13	Aluminium	Al	3	
4	Beryllium	Beryllium Be		14 Silicon		Si	4	
5	Boron	В	3	15 Phosphorous		Р	3	
6	Carbon	С	4	16	Sulphur	S	2	
7	Nitrogen	N	3	17	Chlorine	Cl	1 .	
8	Oxygen	0	2	18	Argon	Ar	0	
9	Fluorine	F	1	19	Potassium	К	1	
10	Neon	Ne	0	20	Calcium	Ca	2	

Exercises : Complete the following phrases:-

1) The period number is equal to the number of -----

2) Block s is located ----- the modern periodic table

3) Block p contains ----- group

4) Noble gases fall into the category -----

5) Block d is located in ----- the modern periodic table

6) The first scientist to create a true periodic table -----

7) Moseley arranged the elements in ascending order according to -----

8) Number of elements in the modern periodic table -----

9) The scientist discovered ----- that the nucleus contains positively charged protons

10) The scientist added ---- the group of inert gases to the periodic table